Curcumol Exerts Anticancer Effect in Cholangiocarcinoma Cells via Down-Regulating CDKL3

نویسندگان

  • Jinduo Zhang
  • Gang Su
  • Zengwei Tang
  • Li Wang
  • Wenkang Fu
  • Sheng Zhao
  • Yongjiang Ba
  • Bing Bai
  • Ping Yue
  • Yanyan Lin
  • Zhongtian Bai
  • Jinjing Hu
  • Wenbo Meng
  • Liang Qiao
  • Xun Li
  • Xiaodong Xie
چکیده

Curcumol is the major component extracted from root of Rhizoma Curcumae. Recent studies have shown that curcumol exerts therapeutic effects against multiple conditions, particularly cancers. However, the therapeutic role and mechanism of curcumol against cholangiocarcinoma cells are still unclear. In our current research, we tested the effect of curcumol in cholangiocarcinoma cells, and using two-dimensional electrophoresis, proteomics and bioinformatics, we identified cyclin-dependent kinase like 3 (CDKL3) as a potential target for curcumol. We have demonstrated that curcumol can evidently suppress growth and migration of cholangiocarcinoma cells. Furthermore, curcumol could significantly block the cell cycle progression of the cholangiocarcinoma cells. These effects could be largely attributed to the inhibition of CDKL3 by curcumol. Further studies have recapitulated the oncogenic role of CDKL3 in that knockdown of CDKL3 by lentiviral mediated transfection of shRNA against CDKL3 also led to a significant inhibition on cell proliferation, migration, invasion, and cell cycle progression. Given the high level of CDKL3 expression in human cholangiocarcinoma tissues and cell lines, we speculated that CDKL3 may constitute a potential biological target for curcumol in cholangiocarcinoma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

P-35: Celecoxiband Silymarin Ameliorated The Varicocele-Induced Inflammation and Oxidative Stress; Evidence for CoxII,iNOS and Enzymatic Antioxidant Status

Background: Varicocele (VCL) exerts its impact via enhancing inflammation and down-regulating testicular endocrine and antioxidant statuses. Celecoxib (CCB) is a non-steroidal anti-inflammatory drug (NSAID), which its effects based on the inhibition of cyclooxygenase (COX) enzymes. On the hand, silymarin (SMN) is known for its remarkable anti-oxidative impact. Therefore, present study was desig...

متن کامل

Chemical Components of Volatile Oil from Curcuma Kwangsiensis and Its Growth Inhibition on H446 Cells

Curcuma Kwangsiensis S. G. Lee et C. F. Liang originates from the rhizome of the Curcuma Genus which is commonly used in traditional Chinese medicine. Pharmacological studies showed that curzerenone [1], curcumol, curdione, β-elemene, germacrone were the active ingredients of volatile oil from rhizoma curcuma. In addition, they had the effect of anti-inflammation, antibiosis [2], antivirus [3],...

متن کامل

FXR agonists enhance the sensitivity of biliary tract cancer cells to cisplatin via SHP dependent inhibition of Bcl-xL expression

Chemoresistance is common in patients with biliary tract cancer (BTC) including gallbladder cancer (GBC) and cholangiocarcinoma (CC). Therefore, it is necessary to identify effective chemotherapeutic agents for BTC. In the present study, we for the first time tested the effect of farnesoid X receptor (FXR) agonists GW4064 and CDCA (chenodeoxycholic acid) in combination with cisplatin (CDDP) on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018